Actin-based motility is sufficient for bacterial membrane protrusion formation and host cell uptake.
نویسندگان
چکیده
Shigella flexneri replicates in the cytoplasm of host cells, where it nucleates host cell actin filaments at one pole of the bacterial cell to form a 'comet tail' that propels the bacterium through the host's cytoplasm. To determine whether the ability to move by actin-based motility is sufficient for subsequent formation of membrane-bound protrusions and intercellular spread, we conferred the ability to nucleate actin on a heterologous bacterium, Escherichia coli. Previous work has shown that IcsA (VirG), the molecule that is necessary and sufficient for actin nucleation and actin-based motility, is distributed in a unipolar fashion on the surface of S. flexneri. Maintenance of the unipolar distribution of IcsA depends on both the S. flexneri outer membrane protease IcsP (SopA) and the structure of the lipopolysaccharide (LPS) in the outer membrane. We co-expressed IcsA and IcsP in two strains of E. coli that differed in their LPS structures. The E. coli were engineered to invade host cells by expression of invasin from Yersinia pseudotuberculosis and to escape the phagosome by incubation in purified listeriolysin O (LLO) from Listeria monocytogenes. All E. coli strains expressing IcsA replicated in host cell cytoplasm and moved by actin-based motility. Actin-based motility alone was sufficient for the formation of membrane protrusions and uptake by recipient host cells. The presence of IcsP and an elaborate LPS structure combined to enhance the ability of E. coli to form protrusions at the same frequency as S. flexneri, quantitatively reconstituting this step in pathogen intercellular spread in a heterologous organism. The frequency of membrane protrusion formation across all strains tested correlates with the efficiency of unidirectional actin-based movement, but not with bacterial speed.
منابع مشابه
Molecular mechanisms of cell–cell spread of intracellular bacterial pathogens
Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, ...
متن کاملModeling the evolution of cells outgrowth due to the force exerted by actins
Motility and membrane deformation are crucial to motile cells. Therefore formation of protrusion in the membrane has been the subject of various studies. The stable shape of the membrane and also its movements are controlled by the forces exerted by actin filaments. In order to study the protrusion behavior, we represented a toy model based on actin filaments polar characteristic and elastic ch...
متن کاملRNAi Screen Reveals Host Cell Kinases Specifically Involved in Listeria monocytogenes Spread from Cell to Cell
Intracellular bacterial pathogens, such as Listeria monocytogenes and Rickettsia conorii display actin-based motility in the cytosol of infected cells and spread from cell to cell through the formation of membrane protrusions at the cell cortex. Whereas the mechanisms supporting cytosolic actin-based motility are fairly well understood, it is unclear whether specific host factors may be require...
متن کاملMolecular mechanism of protrusion formation during cell-to-cell spread of Listeria
The bacterial pathogen Listeria monocytogenes spreads within human tissues using a motility process dependent on the host actin cytoskeleton. Cell-to-cell spread involves the ability of motile bacteria to remodel the host plasma membrane into protrusions, which are internalized by neighboring cells. Recent results indicate that formation of Listeria protrusions in polarized human cells involves...
متن کاملArrest of Listeria movement in host cells by a bacterial ActA analogue: implications for actin-based motility.
Upon entering the host cell's cytoplasm, the pathogen Listeria monocytogenes can subvert the normal contractile system of the host cell; subsequent assembly of polar actin-filament structures is likely to provide the force for rapid intracellular bacterial movement and its cell-to-cell spread. We have now investigated the functional consequences of microinjecting Listeria-infected PtK2 cells wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular microbiology
دوره 3 9 شماره
صفحات -
تاریخ انتشار 2001